Image

{ELIDEK MAIN MENU EN}

Image

Image

Nanotechnology Applications of Polymer Brushes Formed onto Surfaces from Linear Triblock Terpolymer Precursors

ACRONYM: NANOPOLYBRUSH

Principal Investigator : Apostolos Avgeropoulos, Professor of Polymeric Materials, Department of Materials Science and Engineering, University of Ioannina

Host Institution : University of Ioannina, Department of Materials Science and Engineering

 

External Collaborators:

1. MIT/USA ( Professor Caroline Ross, Department of Materials Science and Engineering)

2.RICE UNIVERSITY/USA ( Professor Edwin L. Thomas, Department of Materials Science and Nanoengineering)

3.NATIONAL TSING-HUA UNIVERSITY (Professor Rong-Ming Ho, Department of Chemical Engineering)

Project Duration : 36  months

Project Funding : 200,000

Proposal’s aim

The proposed original research activity refers for the first time to the synthesis of specific linear triblock terpolymers wherein the poly(butadiene) block will undergo chemical modification to produce reactive -OH groups through which the PB will be grafted onto various substrates. In particular, the modified PB block exhibits low molecular weight in order to increase the binding capacity onto the surface, and to avoid miscibility during the self-assembly of the residual diblock copolymer, which is expected to microphase separate.
It is noteworthy in the proposed original research that the block to be grafted onto the substrate surface is associated with the selective wetting and chemical affinity of the other two blocks of the triblock terpolymer. The whole approach proposed in the research proposal has not been previously reported in the literature and is considered to be innovative for nanolithography techniques and for their use in nanotechnology polymer applications in general.

Innovation

In the proposed systems of PB1,4-b-PS-b-PDMS, PB1,2-b-PS-b-PDMS, PS-b-PB1,4-b- PDMS and PS-b-PB1,2-b-PDMS types respectively, a physical adsorption study on the surface will be performed for the smallest block (PB1,4 or PB1,2) and the results will be compared with those obtained by chemical modification of the type-1,2 vinyl bonds to-OH functional groups. Differences and/or similarities will be recorded. It should be mentioned again that such a comparison is novel and innovative since it has not been reported in the literature and is probably attributed to the lack of the ability to synthesize controlled polydienes with specific microstructure (either ~ 92% -1,4 and ~ 8% -1,2 or entirely 100 % - 1,2). The ability to synthesize the 2nd case (PB with only 100% microstructure -1,2) and its chemical modification with 100% yield has already been reported in the literature by the PI and his research team.

Based on the requirements for today's nanotechnology applications for sub-10nm, the molecular characteristics of the proposed terpolymers, will have total average molecular weight per number in the range of 10,000 g/mol to 15,000 g/mol with the corresponding molecular weight for the PB of any microstructure being in the range of 1,000 g/mol to 2,000 g/mol. The PB block is chosen to be of low molecular weight in order to facilitate the physical adsorption of a very thin layer on the surface of the preferred solid substrate. It will therefore be used as a polymeric brush on a corresponding surface in order to study whether the self-assembly of the remaining two PS and PDMS blocks will be prominent. The sequence of the blocks as well as the type of PB (either PB1,4 or PB1,2) will play a significant role in the proposed research.

Innovation in the proposed research lies in the use of a block A that is "sacrificed" to improve the order and orientation of the final film. It is proposed to use as block A the poly(butadiene) with high microstructure of -1,4 or poly(butadiene) with high microstructure of -1,2; where the PI and the research team have proven synthesis experience both in the particular block with different and controlled microstructures and in the synthesis of linear triblock terpolymers bearing this block.

References

  1. Park, C.; Yoon J.; Thomas, E. L.; Polymer, 2003, 44, 6725-6760.                
  2. Choi, P.; Fu, P.; Guo, L. J.; Adv. Funct. Mater., 2007, 17, 65-70.
  3. Politakos, N.; Ntoukas, E.; Avgeropoulos, A.; Krikorian, V.; Pate, B. D.; Thomas, E. L.; Hill, R. M.; J. Pol. Sci. PartB: Pol. Phys., 2009, 47, 2419-2427.
  4. Chao, C.-C.; Wang, T.-C.; Ho, R.M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L.; ACS Nano, 2010, 4, 2088-2094.
  5. Chao, C.-C.; Ho, R.M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L.; Soft Matter, 2010, 6, 3582-3587.
  6. Bates, C. M.; Seshimo, T.; Maher, M. J.; Cushen, J. D.; Dean, L. M.; Blachut, G.; Ellison, C. J.; Willson, C. G.; Science, 2012, 338, 775-779.
  7. Tavakkoli, K.G.A.; Gotrik, K.W.; Hannon, A.F.; Alexander-Katz, A.; Ross, C.A.; Berggren, K.K.; Science, 2012, 336, 1294-1298.
  8. Lodge, T. P.; Dalvi, M. C.; Phys. Rev. Lett.,1995, 75, 657-660.
  9. O’Driscoll, B. M. D.; Kelly, R. A.; Shaw, M.; Mokarian-Tabari, P.; Liontos, G.; Ntetsikas, K.; Avgeropoulos, A.; Petkov, N.; Morris, M. A.; Eur. Pol. J., 2013, 49, 3445-3454.
  10. Lo, T.-Y.; Dehghan, A.; Georgopanos, P.; Avgeropoulos, A.; Shi, A-C., Ho, R-M.;
    Macromolecules, 2016, 49, 624-633.
  11. Lo, T.-Y.; Ho, R.-M.; Georgopanos, P.; Avgeropoulos, A.; Hashimoto, T.; ACS MacroLetters, 2013, 2, 190-194.
  12. Borah, D.; Rasappa, S.; Salaun, M.; Zellsman, M.; Lorret, O.; Liontos, G.; Ntetsikas, K.; Avgeropoulos, A.; Morris, M. A.; Adv. Funct. Mat., 2015, 25, 3425-3432.
  13. Tu, K.-H.; Bai, W .; Liontos, G.; Ntetsikas, K.; Avgeropoulos, A.; Ross, C. A.;
    Nanotechnology, 2015, 26, 375301 (12pp).
  14. Lee, K.; Kreider, M.; Bai, W.; Cheng, L.-C.; Safari-Dinachali, S.; Tu, K.-H.; Huang, T.; Ntetsikas, K.; Liontos, G.; Avgeropoulos, A.; Ross, C. A.; Nanotechnology, 2016, 27, 465301 (11pp).
  15. Georgopanos, P.; Lo, T.-Y.; Ho, R.-M.; Avgeropoulos, A.; Polymer Chemistry, 2017, 8,843-850.
  16. Hadjichristidis, N.; Xenidou, M.; Iatrou, H.; Pitsikalis, P.; Poulos, Y.; Avgeropoulos, A.;Sioula, S.; Paraskeva, S.; Velis, G.; Lohse, D. J.; Schulz, D. N.; Fetters, L.J.; Wright, P. J.; Mendelson, R. A.; Garcia-Franco, C. A.; Sun, T.; Ruff, C. J.; Macromolecules, 2000, 33, 2424-2436.
  17. Politakos, N.; Weinman, C. J.; Paik, M. Y.; Sundaram, H. S.; Ober, C. K.; Avgeropoulos, A.; J. Pol. Sci., Part A: Pol. Chem., 2011, 49, 4292-4305.
  18. Avgeropoulos, A.; Paraskeva, S.; Hadjichristidis, N.; Thomas, E. L.; Macromolecules, 2002, 35, 4030-4035.
  19. Tsoukatos, T.; Avgeropoulos, A.; Hadjichristidis, N.; Hong, K.; Mays, J. W.; Macromolecules, 2002, 35, 7929-7935.
  20. Rangou, S.; Avgeropoulos, A.; J. Pol. Sci., Part A: Pol. Chem., 2009, 47, 1567-1574.
  21. Zapsas, G.; Moschovas, D.; Ntetsikas, K.; Rangou, S; Lee, J.-H.; Thomas, E. L.; Zafeiropoulos, N. E.; Avgeropoulos, A.; J. Pol. Sci., Part B: Pol. Phys., 2015, 53, 1238- 1246.
  22. Polymeropoulos, G.; Zapsas, G.; Hadjichristidis, N.; Avgeropoulos, A.; ACS Macro Letters, 2015, 4, 1392-1397.
  23. Ntaras, C.; Polymeropoulos, G.; Zapsas, G.; Ntetsikas, K.; Liontos, G.; Moschovas, D.; Karanastasis, A.; Rangou, S.; Stewart-Sloan, C.; Hadjichristidis, N.; Thomas, E. L.; Avgeropoulos, A.; J. Pol. Sci., Part B: Pol. Phys., 2016, 54, 1443-1449.